XMan
Day2 ,整理一下bibi 师傅的笔记。
序列密码部分。
序列密码又称流密码,是使用一个随时间变化的加密变换,一次加密一个明文的独立符号单位。
随机数
不存在真正的随机数。
伪随机数发生器特性
相同的种子产生的随机数相同,其种子多是来源于时间和噪音。
Brute Seed
例题
Jarvis OJ 的一题babyrpd 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 class Unbuffered (object ): def __init__ (self, stream ): self.stream = stream def write (self, data ): self.stream.write(data) self.stream.flush() def __getattr__ (self, attr ): return getattr (self.stream, attr) import syssys.stdout = Unbuffered(sys.stdout) import signalsignal.alarm(600 ) import randomimport timeflag = open ("/root/level0/flag" , "r" ).read() random.seed(int (time.time())) def check (): recv = int (raw_input()) if recv == random.randint(0 , 2 ** 64 ): print flag return True else : print "atum tql" return False while 1 : if check(): break
根据上述条件,种子相同的随机数生成器生成的随机数一样的,因此只需要爆破时间就好了。
要注意的是此处在对比recv() 和random.randint() 函数的值的时候,每比较一次,需多生成一次随机数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 from zio import *import timeimport randomtarget = ("47.97.215.88" , 20000 ) io = zio(target) io.interact() def getstream (times ): for i in range (times - 1 ): random.randint(0 , 2 ** 64 ) return random.randint(0 , 2 ** 64 ) times = 0 now = int (time.time()) + 10 while 1 : now -= 1 times += 1 seed = random.seed(now) io.writeline(str (getstream(times))) if "atum" not in io.readline(): break
Linear Congruential PRNG
Java 中的java.util.Random ,C 中的rand() ,PHP 中的rand() 都有着相似的特性,使用一个48 位的种子,被同一个线性同余公式生成,若使用的初始种子一样,则生成返回的随机序列一样,公式和初始值如下。
1 2 3 4 next_state = (state * multiplier + addend) mod (2 ^ precision) multiplier = 25214903917 addend = 11 Precision = 48
从中摘抄了部分java.util.Random 的实现代码。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 class Random implements java .io.Serializable { static final long serialVersionUID = 3905348978240129619L ; private final AtomicLong seed; private static final long multiplier = 0x5DEECE66DL ; private static final long addend = 0xBL ; private static final long mask = (1L << 48 ) - 1 ; private static final double DOUBLE_UNIT = 0x1.0p-53 ; private static final AtomicLong seedUniquifier = new AtomicLong (8682522807148012L ); public Random (long seed) { if (getClass() == Random.class) this .seed = new AtomicLong (initialScramble(seed)); else { this .seed = new AtomicLong (); setSeed(seed); } } private static long initialScramble (long seed) { return (seed ^ multiplier) & mask; } public int nextInt () { return next(32 ); } protected int next (int bits) { long oldseed, nextseed; AtomicLong seed = this .seed; do { oldseed = seed.get(); nextseed = (oldseed * multiplier + addend) & mask; } while (!seed.compareAndSet(oldseed, nextseed)); return (int )(nextseed >>> (48 - bits)); } }
此处截取的是有参的Random(long
seed) 构造函数,可以看到的是当seed 一致的时候,返回生成的序列值也都一样。
例题
Jarvis OJ 的一题mediumrpd 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 class Unbuffered (object ): def __init__ (self, stream ): self.stream = stream def write (self, data ): self.stream.write(data) self.stream.flush() def __getattr__ (self, attr ): return getattr (self.stream, attr) import syssys.stdout = Unbuffered(sys.stdout) import signalsignal.alarm(600 ) import osos.chdir("/root/level1" ) flag=open ("flag" ,"r" ).read() import subprocesso = subprocess.check_output(["java" , "Main" ]) tmp=[] for i in o.split("\n" )[0 :3 ]: tmp.append(int (i.strip())) v1=tmp[0 ] % 0xffffffff v2=tmp[1 ] % 0xffffffff v3=tmp[2 ] % 0xffffffff print v1print v2v3_get=int (raw_input()) if v3_get==v3: print flag
还有一个被调用的Java 代码。
1 2 3 4 5 6 7 8 9 import java.util.Random;public class Main { public static void main (String[] args) { Random random = new Random (); System.out.println(random.nextInt()); System.out.println(random.nextInt()); System.out.println(random.nextInt()); } }
根据上面截取的部分Random() 函数的实现代码,48 位的nextseed 最后进行了一个>>> 的无符号右移16 位,因此我们最后已知的只有32 位,但可以通过爆破被销毁的16 位即math.pow(2,16) 来求解。
1 2 3 4 5 6 7 8 9 10 Random random = new Random ();long v1 = random.nextInt();long v2 = random.nextInt();for (int i = 0 ; i < 65536 ; i++) { long state = v1 * 65536 + i; if (((state * multiplier + addend) & mask) >>> 16 ) ==v2){ System.out.println("Seed found: " + state); break ; } }
故Exp 如下。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 from zio import *import timeimport randomtarget=("47.97.215.88" ,20001 ) io=zio(target) v1=int (io.readline().strip()) v2=int (io.readline().strip()) def liner (seed ): return ((seed*25214903917 +11 ) & 0xffffffffffff ) for i in range (0xffff +1 ): seed=v1*65536 +i if liner(seed)>>16 == v2: print seed print liner(liner(seed))>>16 io.writeline(str (liner(liner(seed))>>16 )) print io.readline()
Mersenne Twister
Ruby 的rand() ,Python 的random ,PHP 的mt_rand() 也有着相似的特性。
1 2 3 4 5 s1 = *BG(next)++; s1 ^= (s1 >> 11 ); s1 ^= (s1 << 7 ) & 0x9d2c5680 U; s1 ^= (s1 << 15 ) & 0xefc60000 U; return ( s1 ^ (s1 >> 18 ) );
截取了通过上一位随机数生成下一位随机数的算法。
首先,在/ext/standard/basic_functions.h 中定义如下。
1 2 3 4 5 6 7 8 9 #define MT_N (624) #ifdef ZTS #define BG(v) ZEND_TSRMG(basic_globals_id, php_basic_globals *, v) PHPAPI extern int basic_globals_id; #else #define BG(v) (basic_globals.v) PHPAPI extern php_basic_globals basic_globals; #endif
以及在/Zend/zend.h 中定义如下。
1 2 3 4 5 6 7 8 9 10 11 12 13 #ifdef ZEND_ENABLE_STATIC_TSRMLS_CACHE #define ZEND_TSRMG TSRMG_STATIC #define ZEND_TSRMLS_CACHE_EXTERN() TSRMLS_CACHE_EXTERN() #define ZEND_TSRMLS_CACHE_DEFINE() TSRMLS_CACHE_DEFINE() #define ZEND_TSRMLS_CACHE_UPDATE() TSRMLS_CACHE_UPDATE() #define ZEND_TSRMLS_CACHE TSRMLS_CACHE #else #define ZEND_TSRMG TSRMG #define ZEND_TSRMLS_CACHE_EXTERN() #define ZEND_TSRMLS_CACHE_DEFINE() #define ZEND_TSRMLS_CACHE_UPDATE() #define ZEND_TSRMLS_CACHE #endif
还有在/TSRM/TSRM.h 中有如下定义。
1 2 3 4 5 6 7 #define TSRM_UNSHUFFLE_RSRC_ID(rsrc_id) ((rsrc_id)-1) #define TSRMG(id, type, element) (TSRMG_BULK(id, type)->element) #define TSRMG_BULK(id, type) ((type) (*((void ***) tsrm_get_ls_cache()))[TSRM_UNSHUFFLE_RSRC_ID(id)]) #define TSRMG_STATIC(id, type, element) (TSRMG_BULK_STATIC(id, type)->element) #define TSRMG_BULK_STATIC(id, type) ((type) (*((void ***) TSRMLS_CACHE))[TSRM_UNSHUFFLE_RSRC_ID(id)])
后在/ext/standard/mt_rand.c 中定义如下。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 #define N MT_N #define M (397) #define hiBit(u) ((u) & 0x80000000U) #define loBit(u) ((u) & 0x00000001U) #define loBits(u) ((u) & 0x7FFFFFFFU) #define mixBits(u, v) (hiBit(u)|loBits(v)) #define twist(m,u,v) (m ^ (mixBits(u,v)>>1) ^ ((uint32_t)(-(int32_t)(loBit(v))) & 0x9908b0dfU)) static inline void php_mt_initialize (uint32_t seed, uint32_t *state) { register uint32_t *s = state; register uint32_t *r = state; register int i = 1 ; *s++ = seed & 0xffffffff U; for ( ; i < N; ++i ) { *s++ = ( 1812433253U * ( *r ^ (*r >> 30 ) ) + i ) & 0xffffffff U; r++; } } static inline void php_mt_reload (void ) { register uint32_t *state = BG(state); register uint32_t *p = state; register int i; if (BG(mt_rand_mode) == MT_RAND_MT19937) { for (i = N - M; i--; ++p) *p = twist(p[M], p[0 ], p[1 ]); for (i = M; --i; ++p) *p = twist(p[M-N], p[0 ], p[1 ]); *p = twist(p[M-N], p[0 ], state[0 ]); } else { for (i = N - M; i--; ++p) *p = twist_php(p[M], p[0 ], p[1 ]); for (i = M; --i; ++p) *p = twist_php(p[M-N], p[0 ], p[1 ]); *p = twist_php(p[M-N], p[0 ], state[0 ]); } BG(left) = N; BG(next) = state; } PHPAPI void php_mt_srand (uint32_t seed) { php_mt_initialize(seed, BG(state)); php_mt_reload(); BG(mt_rand_is_seeded) = 1 ; } PHPAPI uint32_t php_mt_rand (void ) { register uint32_t s1; if (UNEXPECTED(!BG(mt_rand_is_seeded))) { php_mt_srand(GENERATE_SEED()); } if (BG(left) == 0 ) { php_mt_reload(); } --BG(left); s1 = *BG(next)++; s1 ^= (s1 >> 11 ); s1 ^= (s1 << 7 ) & 0x9d2c5680 U; s1 ^= (s1 << 15 ) & 0xefc60000 U; return ( s1 ^ (s1 >> 18 ) ); } PHP_FUNCTION(mt_srand) { zend_long seed = 0 ; zend_long mode = MT_RAND_MT19937; ZEND_PARSE_PARAMETERS_START(0 , 2 ) Z_PARAM_OPTIONAL Z_PARAM_LONG (seed) Z_PARAM_LONG (mode) ZEND_PARSE_PARAMETERS_END () ; if (ZEND_NUM_ARGS() == 0 ) seed = GENERATE_SEED(); switch (mode) { case MT_RAND_PHP: BG(mt_rand_mode) = MT_RAND_PHP; break ; default : BG(mt_rand_mode) = MT_RAND_MT19937; } php_mt_srand(seed); }
在PHP 中使用mt_srand() 给随机数发生器播种时,一般是使用MT_RAND_MT19937 模式生成随机数,先调用php_mt_srand(uint32_t
seed) 函数,利用seed 先在栈上初始化生成624 组state ,后调用php_mt_reload() 函数重新生成624 组state ,接着执行BG(left)
=
N 表示剩余未用于计算随机数的state 组数,然后执行BG(mt_rand_is_seeded)
= 1 表示已经使用过种子播种。
最后每次调用mt_rand() 函数的时候,都会先检查是否已经使用种子生成过序列值,若无则使用GENERATE_SEED() 函数生成,否则就根据已有的state 直接生成新的随机数,同时减少BG(left) ,当其为0 时再次调用php_mt_reload() 函数生成新一组state 。
例题
Jarvis OJ 的一题hardrpd 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 class Unbuffered (object ): def __init__ (self, stream ): self.stream = stream def write (self, data ): self.stream.write(data) self.stream.flush() def __getattr__ (self, attr ): return getattr (self.stream, attr) import syssys.stdout = Unbuffered(sys.stdout) import osos.chdir("/root/level2" ) from random import *while 1 : a=raw_input("#" ) target=getrandbits(32 ) if a!=str (target): print target else : print open ("flag" ,"rb" ).read()
那么根据以上的分析,只需收集好624 组随机数,逆推出用作计算的state ,再得出下一组新的state ,计算新的第625 个随机数即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 from zio import *target=("47.97.215.88" ,20002 ) io=zio(target) getlist=[] for i in range (624 ): print i io.read_until("#" ) io.writeline("1" ) getlist.append(int (io.readline().strip())) import libprngcrackr=libprngcrack.crack_prng(getlist) io.read_until("#" ) io.writeline(str (r.getrandbits(32 ))) io.interact()